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ABSTRACT

Several complementary aspects of current conduction in multi-
component weakly ionized gases are considered. The first of these is
a systematic generalization of the ion current densities in essentially
a power series in the ion to neutral concentration ratios derived from
multicomponent kinetic theory arguments. The usual definition of ion

mobility is shown to be a function of these ratios and lacks uniqueness

near the system electrodes if the first order terms are retained. A
consequence of this result is that the usual experimental assumption
that the ratio of the ion binary diffusion coefficient to its mobility
is a function of the system temperature is shown to be valid only in
regions of negligible space charge and vanishing ion concentrations.
The second result is a numerical study of a simple four-component
system showing the development of ion sheaths near the electrodes as
a function of both ionization intensity and electron attachment
frequency. A plot of the ratio of electron to negative ion current
in the external circuit as a function of the latter parameter for
fixed ionization intensity suggests a possible determination of the

attachment process in oxygen as a function of ionizatior density.

% This research was carried out under Grant NsG-275-62 from the
National Aeronautics and Space Administration.




SOME ASPECTS OF WEAKLY CONDUCTING, IONIZED GASES
Introduction

Simple theories of current transport often suffice as a
foundation for the analyses of many experiments in gaseous electronics,
and for the interpretation of ion chamber phenomena. However, the
systematic extension of the conduction equations to include space

t

charge effects' near the electrodes as well as certain other
phenomena, requires a more general analysis to include ion concen-
tration dependence and an appropriate generalization of the diffusion
coefficients. Generally speaking, the added information obtained
from such extended treatments would deal primarily with the ion
density profiles occurring near the electrodes. These regions of
pronounced charge imbalance, are often referred to as polarization
or 'sheath" effects, and served to modify current flow in the system
more or less profoundly depending on the degree of ionization.
Particularly in the case of a Townsendvdischarge, where ion
multiplication occurs in the electrode sheaths, the extent and
nature of these regions has an important bearing on the subsequent
current and the usefulness of generalized‘conduction equations is
apparent.

It is also true that the local electric field in the inter-
electrode space is '"shaped" by the nature of chemical reactions
affecting the number and mobility of the ions on their course to
the electrodes. While it is true that the generalized current

expressions are needed as described above, useful semiquantitative
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results may be obtained with the usual assumption that the mobilities
of the various ions are independent of ion concentrations. A special
case of a system of this type will be analyzed in this paper; namely,
one with three charged species where the negative ions are formed by
attachment of free electrons to the neutral molecules. It happens
that the charge conservation feature of this problem considerably
simplifies its mathematical structure, but the chief reason for its
consideration is that it also represents a technique for the
experimental measurement of electron attachment coefficients. As
often happens in the latter case, the electron/ion space charge
effects are ignored and current flows in response to externally
applied fields only, Certainly under the experimental conditions
chosen (currents measured in picoamperes) such an assumption is
justified. But many applications of electron attachment in more
intensely ionized systems demand additional knowledge of the latter
coefficient's possibde concentration dependence, and therefore the

model developed in the latter part of this paper will be of interest. N
Generalized Charge Transport

As is well known, the current flow between electrodes in an
ionized gas may be treated to a high degree of precision by means
of the multicomponent fluid dynamic equations describing conservation
of ion species, fluid momentum and energy, and Maxwell's equations

for the associated electromagnetic field. Two constituitive equations




are needed to complete the fluid description; an equation of state

for the gas and the functional form of the ion current densities.

This intractable set of equations can be simplified by a number of
approximations. For systems considered "weakly ionized" (ion
densities less than 10-5 neutral species density), and with average
electric fields less than the Townsend threshold, it is often

possible to ignore heat and momentum transport, self-generated
magnetic fields and chemical reactions among the ions. Time dependent
problems sometimes may be further linearized in the electric field and

treated analytically.(l)

Our present consideration will cover the
steady state in the weak ionization limit. 1In this case the relevant
descriptive variables are; the set of all number densities, n;

the average component velocities, Ei , the scalar pressure, p ;

the charge density, e ; and the electric field, E . The applied
voltage, ionization source, and temperature then appear as parameters
in the golution to the combined field and continuity equations for
the system.

Consider an N component system consisting of a neutral
component ('1"), and N-1 ionized species contained in a vessel of
volume, V’ , with two electrodes as part of the walls. The gas is
maintained at a fixed temperature, T , and the external ionization
source uniformly illuminateé the gas between the electrodes,

maintained at a potential difference, VO , by a constant voltage

source. The current density for the i-th species is then defined as;
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where éi = +Zie is the charge of the i-th ion, and the total

current density is the sum;

N
i- 2 i | (2)
i=2

The motion of the gas as a whole is given by the mass average or

stream velocity;
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where g is the mass weighted specific volume. Finally the total

number and charge densities are defined by;

(4)
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In the absence of turbulence, the lack of any macroscopic magnetic
fields is a necessary and sufficient condition that the mass average
velocity be irrotational. Therefore the fluid momentum conservation

may be written as:

‘Fgrad %1(2) = -gradp + ?g (6)
in the steady state. Except for mass average velocities approaching
the local speed of sound in the system, the term in grad % Xi on
the left of the above equation (the so-called '"inertial term'") may
be dropped, as it is very small. Now eq. 6, the species continuity

equations, the perfect gas law;
p = nkT ‘ (7)

and a functional form of the current densities, eq. 1, provide a
consistent mathematical description in terms of the macroscopic
variables previously given.

In most studies, the ion current densities are assumed linear
in gradients of the ion concentrations, the pressure and the
electric field. This choice can be shown to be valid by the general

(2)

or the detailed analysis

(3)

arguments of irreversible thermodynamics
of the multi-component kinetic theory of gases , provided the

- system is not far from equilibrium. After elimination of pressure

in favor of the number density and temperature by means of the




equation of state, the above arguments hold that;

gi = grad(ni/n)+(ni/n-himi/§' )gradln(n)-(nimi/nkT E)(eig/mi- f)g
i=1,-+-,N

(8)

is the driving force acting on a fluid element of the i-th component

of the system, where the form has been chosen such that;

Vs o

This constraint follows from tlle requirement that the motion occurring
from eq. 9 be relative to the center of mass of the system. Therefore

the driven current densities are linear in the generalized forces;

.
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The coefficients, Dij , in the above equations are referred to as

the multicomponent diffusion coefficients and are discussed in detail

(3

elsewhere From the definition of the mass average velocity and

the current densities, it follows that these coefficients are not




all independent, but that;

N
Z mDiy = 0;j=l, ", N (12)
i=1

In accordance with the reference given above, the independence may
be restored to the description provided the choice Dii =0 Iis
arbitrarily made. In the case of a two component system, it follows
from the definition of these quantities that they reduce identically
to the usual binary diffusion coefficients.

The system of equatiohs given in eqs. 10 and 11 are inadequate
to specify the various current densities and the neutral component
average velocity uniquely. Additional information must be supplied
by integration of one continuity equation for any component or by
integration of the continuity equation for the fluid as a whole.
Under most circumstances, the electrodes merely discharge ions and
accept electrons, and since the system walls are impenetrable, mass

is conserved and;
div( § v ) =0 (13)

For laminar flow, v, may be written as the gradient of a scalar,
which in turn is harmonic in the volume, ) . Therefore, ¥, o is
a constant in magnitude everywhere. The choice of this constant is

established by the following considerations;




a) all specie velocities are finite throughout the volume,

b) all charged ion densities are zero at the electrode of

the same sign.

let all the positive ions be labelled with indices k in the range,

(2€ kSr) and all negative ions be similarly labelled with k 1in the
range (r+1¢ kR £ N-1) If free electrons are present, we shall

assign them the index N . All positive ions discharged at the

negative plate appear as neutral molecules, therefore;

r
Y T Z n Y €y (14)
k=2

and likewise at the positive plate;

N-1
Y = > Ve e (15)
k=r+1

where o(,k, e’k are stoichiametric coefficients (i.e., 20'—302+2e,f¢ =2).
which -are herafter taken as 1 without qualitatively affecting the
arguments. The mass of the positive iomns is m, =‘(m1-ka ), and

that of the negative iomns is (m1+kae), where thevinqex k belongs

in the range appropriate to either the negative or positive ions.

Hence at the electrodes, we find that the (constant) mass flux is;

r N-1
—_ ) - —
E—Vo' M"me Z_zzknkyz[n :'mezzknk‘—/z +Wic”’~,y~ (16)
ke €g. ﬁ;: pos. pos.
electrode electrode electrode




or if each ion carries unit charge;

¥ = menly'l neg S [nNYN ) nlzl] positive

electrode electrode

Either of these two equations shows that the constant mass flux, M ,
is first order in m  and therefore v, 1is of order (me/ml) . A
good approximation then is to replace the set of equations, eq. 10,

and eq. 11, by the set;

N
'°=(2/)§1 Dd, ; i=2, - N
i me/E)) mPydy s 1=
j=1
and
N
~ O < - 0
mnYy T 'Z mn ¥y
i=2

which were obtained from eqs. 10, 11, and 3 by dropping Xb from
eq. 10, and eliminating eq. 11 in favor of eq. 3 with v, set to
zero. The superscripts were added to the above to indicate this
approximation.: Iteration on eqs. 18 and 19 is easily accomplished
by insertion of eq. 19 into eq. 17 (for singly charged ions), then
a re-estimation of the current densities eqs. 10 and 11, etc.

The latter are fhen expressed as a series expansion in essentially
powers of the ratio of electron to ion mass.

Considerable simplication of the generalized force terms, eq. 8,
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may be obtained by use of the mechanical equilibrium expression, eq. 6,
after dropping the left hand inertial term. The approximate current

densities (or the general form, eq. 10) became:

mjpij { kT grad(nj- Sjin) - (ejnj - 5j1 e ).g}
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(20)

)
The Kronecker gg S have been inserted into this formula in order
that the mobilities, defined below, have the standard limiting form
for small ion concentrations. We then define the mobility-as the

proportionality coefficient between the current densities and the

local electric field;

N
-
(o] - n 2 g o
/-4.1 = -——————ning n m.D'. (e.n. - 1j F); i = 2,-..’N .

=y 313 i3

(21)

This formula is the appropriate generalization of the mobility
concept to multicomponent, weakly ionized gas systems for the lowest
order in the ratio of electron to ion masses. More general
expressions may be obtained in this matter by the indicated

iteration scheme.

The kinetic theory of gases gives a relationship between the
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multicomponent diffusion coefficients, and the experimentally
accessible binary diffusion coefficients, which, in the first
approximation of the kinetic theory, is explicit. Let the matrix

be defined:(3)

1M mjz.nk]
F.. = (1 - 8.. ——'{'TT‘ + —F N —
ij ( 13) £ LPij m, Loy POik
i

where the script f)ij are the binary diffusion coefficients of
component i in component j and vice versa. These quantities are
symmetric in the indicies. Now the generalized multicomponent

quantities are given in terms of the inverse to the Un matrix;

o Dij - Fli ) F;i = Gij (23)
Therefore, the evaluation of these two equations and substitution

of the result into eq. 21 gives the mobilities in terms of the
binary diffusion coefficients.

Let us consider a simple, three-component system as an
illustration of the above arguments. .Suppose that the system is
weakly ionized and that we may neglect the interaction of the ion
species among themselves. Thus we have a system of neutral, positive
and negative charges moving under the influence of various extermnal
forces at a rate determined by the ion-neutral interaction. Since

the binary diffusion coefficients depend inversely on the interaction




cross sections; zero for the latter means that the corresponding

coefficient is infinite. We then define the following:

ﬁ 0y = D32 = 00 (no ion-ion interaction)

i) = S ; K‘= ®12/D13; S=m3/m1 T m,/m

12 3772

The mole fractions of the ions are approximately;
5 = nz/n1 and ¢, = n3/n1

The matrix F may be written;

0 L K

F = 1 (I1+¢x) O § (24)
k(cst!fs) K3 0 |

and its inverse is easily computed to be;

-k KY/S S

Fo_ b 1 ke k{Be) k(@) (25)
T My (Khke KiCa #KGS
1(/3 o -3-24’ s ) %(“Cz) k(1546) ~(1+¢2)

The matrix G 1is

0 k(14+5D) k+d

£D 1 k+k +kes bKT ; ¥

= k 3 3 o) kik +ke +k Gl (26

G  (Forrdog) |6 £k, k) (26)
3
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If written to first order in the ion densities, this matrix becomes;

=)

w
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o) eﬂ)— 1 +c¢
M3 =" R

correct to first order

n
R 2
2+C3- (5 n

(27)

21, the mobilities are;

(cy=cq )

(1 + k/&)

in the ion densities. The leading terms of

these two mobility expressions are the usual definitions given in

terms of the binary diffusion coefficients.

The additional terms

represent effects arising from non-zero space charge, mass and

geometry effects. If the negative charge carriers are electrons,

then the mobilities should be generalized by the iteration scheme

mentioned earlier to ensure that all relevant orders of the electron

to ion mass ratio are retained.

For the special case that

4'0.0




we find that

Mo = "M

as would be expected. Note that the limits of /02 and /UB as mn,

and n, pass to zero are infinite. That is;

lim eznz/iZE .03 7_:’§ E

n,»0 -

‘, late)  (30)
5 RT 1+ kfs Ty }n,w(w Fe

and

Lin e MOE = €D _ 1 m E
ng? SRT | + kS

(req. FIa-fe) (31)
’)'23=o
These two expressions represent back currents flowing against the
proper direction in the applied field. This is a result of the ion
density gradients as shown by the equation of motion. If n1 is

assumed constant, we have;

lim e.u’n.E = eD5 C3 mc('”a (32)
n;_i‘o 2/ 2" T (ks 9

and

14 %W E = -e D) L
0y S3hals E SRT +Kfs

nj*O

Cs 3roc‘ Ty (33)

where the electric field has been replaced by the gradients of the

14
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ion densities. The existence of these limits shows that the mobilities"
are not uniquely defined independent of the so-called "non-conductive"
portion of the ion current densities, except to zero order in the ion
concentrations. Eqs. 28 and 29 also show that the commonly employed
experimental assumptipn(a) that the ratio of mobility to the diffusion

coefficient is a function only of the state of the gas is true only

in regions of near zero space charge. Then the mobility exists and;

_& = _k_T__{ 1-c,- cq +_LC2'_638) (%ﬁ 773);, ""}')773"’7&(7){;0)

(34)

is a valid expansion of the ratio in the ion mole fractioms.

This analysis gives a systematic correct procedure for the
expansion of the general current densities, eq. 20, in a double series
of concentration ratios and the ratio of electron to ion masses.

Such expansions are required in order to systematically explore the
shape of the ion density profiles near the electrodes of a closed

conducting system.




Space Charge Effects in a Simple System

An interesting aspect of current conduction in weakly ionized
systems is the modification of the various ion densities from point
to point in the volume between the electrodes arising from a local
space charge. Such effects have been dealt with extensively in the
theory of thermionic devices, semiconductors, and magnetohydrodynamic
systems, but not often in radiation counter design, or in analysis of
certain conduction experiments. A study of devices in the last two
categories prompted the considerations of this section.

A correct analysis of the ion densities near the electrodes to
any given order in the densities would be based upon the analysis
of the previous paragraphs. These polarization effects also are
strongly influenced by any chemical reactions among the ions tending
to modify the net fluid conductivity. In order to concentrate on
this feature in a simple manner, it is fortunately possibie to
neglect the considerations of the previous section; that is neglect
all gradients in the current densities, and assume constant mobilities,
and still have a viable problem. Such a crude assumption violates
the equation of mechanical equilibrium, eq. 6, which is particularly
impor tant near the electrodes, but nevertheless, sheath formation
can still be represented in a semiquantitative way.

Let us consider a simple four component system consisting of

neutral molecules, singly charged negative and positive ions, and




electrons. Further, the gas will be considered ''weakly ionized' as
described earlier. Suppose, then, that ionizing radiation falls
uniformly on a gas system between plane parallel electrodes of

diameter B meters and spaced d meters apart. The neutral component
weakly ionizes into positive ions and electrons. The latter, in turn,
are depleted by attachment to neutrals, forming negative ions, as

well as being discharged at the positive electrode. Under steady

state conditions, and a constant external voltage source, the ion
populations are determined by two parameters proportional to the

rate of ionization and the electron attachment frequency. TIf the
ion-ion and ion-electron binary diffusion coefficients are set to
infinity, the analysis of the preceding sections shows that the
mobilities are proportional to the ion-neutral and electron-neutral
binary diffusion coefficients. In MKS units, the positive and negative
ion mobilities approximately the same and close to .1 m2/sec-v01t for
most common gases at room temperature. The electron mobility under

the same conditions is approxi@ately a thousand times larger. Let/u

be the ion mobility and /Me, be the correspondent electron number?
The rate of ionization in number of ions produced per cubic meter
per second is N , the applied voltage Vo , and the attachment
frequency is V . Let n+, n~  and n, represent the ion and

electron densities. Dimensionless densities for each of these

species are easily defined;
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+ -
+ o7 M Eo ; Eo is the applied field
7 R
(35)
L MR
7T T (36)
and
4ze = n%/keEo/Nd | (37)

A dimensionless ionization rate and an attachment frequency may be

o

formed:-
2
A = ed N/E Go (38)
Y = VY d//”‘eEo (39)
Typical values for these two parameters are, A = 1.8, and Y = .1
for d=103, N=10"2 ,E =10° , and ¥ = 10° with the mobilities

as given. Let Z = x/d be a dimensionless length, then the continuity

equations and the electric field equation are;

T (7e€) - 1-6"7e JE=E/E . (40a)
-4 e =1 (40b)




d = 40
+ 4 ( '7"'6) 1 (40c)
and

._.]-.__..i_8= 7+-7_-L7E (41)

The boundary conditions on these equations are that the various
ion densities vanish at the electrodes of the same sign. The sum
of eqs. 40a and 40b, and eq. 40c permit trivial quadrature. With

the given boundary conditions, we find that;

<7e +1-58 = a-2 (422)
and

'7*?, = Z (42b)

which may be combined with the field equation, eq. 41 to produce the

result after differentiation;

i "::';‘2‘ (%'82) = x’72+ 13 (7/%2“'0) (43)

Then multiplication by £ , differentiation, and substitution from
eqs. 40a and eq. 43, followed by a simple quadrature, we arrive at

the final electric field equation;
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€28 - g(a-e?-vey + Ay QF-D) ;)/=z-1 (44)

where the boundary condition,

€¢’'= 2@ 7/‘ o
(45)

has been used to evaluate the constant of integration. Eq. 45 and
the additional boundary condition that the average electric field

be equal to the applied field,

~d
J 8()6)d/-1 = 0

completes the specification of the solutions to eq. 44. This equation
must be handled numerically in all but the simplest of systems, and
has been treated thus in this paper; Once the electric field and its
first derivative has been found, the ion densities follow from

eqs; 42a, 42b, and 41. The results of the Runga-Kutta numerical
integration of eq. 44 are shown in figs. 1-9. These plots represent
the schematic cross section of a cell with the negative plate,

viewed edgewise, at the left along the relative magnitude scale.

The positive electrode, similarly viewed, is placed at 1 on the
distance scale along the abscissa. Each figure in this sequence shows
the spacial distribution of the three charged species and the actual
electric field. The horizontal line at 1 on the vertial axis represents

the applied field. Figures 1 through 5 show the variation of the ion




distributions and the electric field for fixed ionization rate as a
function of the electron attachment parameter ( , as it varies from
0 to 10 in several steps. The ion sheath regions near the electrodes
in these figures may be identified by the positive departure of the
actual electric field from the applied (horizontal line) field.

The large free .electrord population that exists for small values of
the electron attqchment coefficient, destroys the symmetry of the
sheaths in the first three figures. Here we see a very pronounced
sheath at the negative electrode and none at the positive one. The
more symmetrical patterns in ® for Y in excess of 5 show sheath
formation at both electrodes. Figs. 6 and 7 show ion, electron and
field distributions at half the dose rate of ionization than in the
previous series. As expected, the electric field shows less
deviation from the applied value, and a variation of the electron
attachment frequency between 1 and 50 shows a relatively minor

ad justment of the center of charge distribution. On the other
hand, the series of figures, 2, 6, 8, and 9, shows a pronounced
development of sheaths as the dose rate is quadrupled. Even though
there is some question about the stability of the Runga-Kutta
integration procedure in the case of fig. 9, qualitatively we see
that the sheath regions dominate the volume, and that the local
electric field is nearly zero at one point. The ions are ''trapped"
in this region of small field, and if ion-ion recombination is

permitted, will appreciably affect the total current drawn, even




though the average ion density would be such as to neglgct this
mechanism.

Fig. 10, based upon the relation between the ion current
densities and the external current shown in Appendix A, gives the
ratio of the electron to the negative ion current for this model as
a function of the electron attachment frequency. A family of such
curves exist for each value of the ionization rate, A, and Eo/p.
The uniqueness of these functions suggests an experiment wherein the
electron attachment is measured as a function of the latter two
quantities. This may be accomplished by simultaneously determining
the free electron population in a cell and measuring the external
current flow in a gas with prominent electron attachment such as
oxygen. Hence possible concentration effects in the attachment
frequency of this or a similar gas interpreted by the previous

section's analysis, may be sought for.

Conclusions

This paper has considered several complementary aspects of
current conduction in weakly ionized, multicomponent gases. The
first of these is the systematic generalization of the ion current
densities under steady state conditions in terms of the kinetic
theory multicomponent diffusion coefficients. From this follows an

expansion of the current densities in essentially the ion concentrations,
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and the known binary diffusion coefficients. The usual definition
of ion mobility alsc shows an ion concentration dependence and a
lack of uniqueness near the system electrodes if first order terms
in the ion concentrations are retained. The ofter quoted result
that the ratio of the binary diffusion ccefficient to the ion mobility
is a function only of temperature is shown to be valid only in regions
of negligible space charge and then in the limit of zero ion
concentrations. (This result follows by generalization of the two
ionized component example given in the first section.)

The second section of this paper deals with an example of space
charge effects in a simple, chemically reactive system. Here the
ion densities and the local electric field were numerically
calculated as a function of the ionization intensity and the
electron attachment frequency. The results show sheath formation
at the electrodes under these various conditions even though the
analysis is quantitatively inaccurate by the considerations of the
first section. A plot of the ratio of electron to negative ion
current conducted in the extermnal circuit as a function of the
electron attachment frequency provides a possible basis of
determination of the latter under various ionization conditions and

ratio of Eo/p; the applied electric field to the pressure.




Appendix A

At every point in the vessel between the electrodes, the
electric field influencing the motion of the ions is the sum of
the applied and space charge fields. In the absence of magnetic
fields, the space charge field may be writtén as the gradient of

a potential. Therefore,

Es = -grad ¢s (Al)

and thus Poisson's equation is;

-divgrad ¢S = pl/e, - (A2)

We assume the boundary conditions;
¢ =0 (A3)

on the electrode surfaces.

In a similar way, the applied field is also the gradient of a

potential;

—0

where now V 1is the solution to LaPlace's equation,

div grad V. = 0 (A5)

E = -grad V ' (a4)

24
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with the boundary conditions,

vV = Vo positive electrode, and V = 0 , negative electrode
(A6)

A consideration of Maxwell's equations establishes the relation
between the total current density in the system and the external

current. The scalar product of the first Maxwell's equation with E;

E- curl H =[.~l + €, doF l_E_:_ ‘ (A7)
and the second with H;

H curl E = '/“o(f;E 5)« H (a8)
when summed together may be writren;

“div ExH) = j (B +E) + 2 [1/2 € @ +ED+ 1/2/01{21

(A9)
with the aid of the well-known vector identity;

-div (E x H) = E-curl H - H- curl E (A10)
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On the other hand, if S represents the surface of the volume, the
integral, Jp (E x H)-ds is the flux of power through the surface,
which, in gge absence of electromagnetic radiation, is just —IVO ,
where I 1is the external circuit current. After dropping the

magnetic field term, the power expression above becomes;

L) . . 2
W= ‘/rdg_;]_-(§0+gl_s) + rdg ——55;[/260(Eo+—E-s)J

(All)

If we assume the geometry of the active volume is such that the
non-electrode walls parallel the applied electric field lines, then
the cross term in the applied and space charge fields may be shown
to vanish by means of the boundary conditions on ¢s . Also, from

eq. A2 and conservation of charge, we find thatj

P) 2 _ . 9Eg . .
5€, 5 E, - -dlv[€o¢87_t—'+¢si] - (G-E)

[o]

(A12)

Where again the surface integral vanishes by the boundary conditions

on ¢s . Thus we are left with the final, simple formula;

. . ' 2
w, o= _/v . (J-E) + %eoﬁ |/V dr E (Al3)
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For steady, applied potentials, the last term on the right-hand
side vanishes. If a circuit has an external load resistance R
and a voltage source V' across both resistor and cell, we find

the following implicit equation for the external current;

PT ﬁ_[l' fL- < df"(i‘ﬁ'(I))}%] (AL4)

~
where E (I) means that the boundary condition, A6 , must be

replaced by

<?

oS . = V - 1IR (A15)

electrode




Footnotes

We should make clear at the outset that we are not considering
sheath formation at walls and electrodes of the cell in the usual
plasma sense. Our coneern js with the macroscopic charge imbalance
established by the current flow fields and the boundary conditions
at the electrodes. A measure of the effect of ion-ion interactions

in modifying the Coulomb potential is the Debye length, ;
A
I\ (Qo KKT\ *?
D n_ el ;
i

where K  is the specific inductive capacity of the medium and n,
is an ion density. If we are to ignore ion-ion interactions, then

either
AD >, d (weak jionization)

where d 1is some relevant dimension of the cell, or;

nkT
}\D ® )f = ( PE )electrode

it 2
TN
o]

'-—I
N’
[~
~

-
N
'—I

The new length, Af is a scale of the ion gradient set up against
the influence of thermal agitation by the applied field at the
electrodes. For the conditions considered in the problem in this

paper, the weak ionization approximation holds; for
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Ionized gases with ion densities of the order of 1012 cm-3 satisfy

the second inequality if the other parameters are the same as

those discussed in the paper.

¥ A constant electronic mobility is a very crude approximation.
In practice, an empirical curve - fit of the electron mobility in

the specific gas studied is required over the desired range of E/p.
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